25. April 2024

Bionische Pavillons auf der Bundesgartenschau 2019

BUGA Faserpavillon © ICD/ITKE Universität Stuttgart

BUGA Faserpavillon
Bundesgartenschau Heilbronn, 2019

Eingebettet in die wellenförmige Landschaft der Bundesgartenschau bietet der BUGA Faserpavillon seinen Besuchern ein einzigartiges architektonisches Erlebnis und einen Blick in die Zukunft des Bauens. Der Pavillon ist das Resultat langjähriger bionischer Forschung des Instituts für Computerbasiertes Entwerfen und Baufertigung (ICD) und des Instituts für Tragkonstruktion und konstruktives Entwerfen (ITKE) an der Universität Stuttgart.
Das Gebäude zeigt, wie das Zusammenführen von modernsten Computertechnologien und Konstruktionsprinzipien aus der Natur die Entwicklung eines gänzlich neuartigen Bausystems ermöglicht. Die tragende Struktur des Pavillons besteht ausschließlich aus Faserverbundwerkstoffen und wird in einem robotergestützten Fertigungsprozess hergestellt. Diese weltweit einzigartige Struktur ist nicht nur hocheffizient und außergewöhnlich leicht, sondern sie ermöglicht gleichzeitig auch einen unverwechselbaren architektonischen Ausdruck und ein außergewöhnliches Raumerlebnis.

Neuartiges, von der Natur inspiriertes Faserverbundbausystem

In der Biologie bestehen die meisten tragenden Strukturen aus Fasern, wie zum Beispiel Zellulose, Chitin oder Kollagen, und einer stützenden Matrix, welche die Fasern in Position hält. Sowohl die erstaunliche Leistungsfähigkeit als auch die Ressourceneffizienz biologischer Strukturen ergeben sich aus eben diesem Fasersystem. Orientierung, Ausrichtung und Dichte der Fasern sind präzise abgestimmt und lokal ausdifferenziert, so dass nur dort Material platziert wird, wo es tatsächlich benötigt wird.
Mit dem BUGA Faserpavillon wird dieses biologische Prinzip auf die Architektur übertragen. Die verwendeten Verbundwerkstoffe aus Glas- und Kohlefaser sind für solch einen Ansatz ideal geeignet.
Das Projekt baut auf der langjährigen bionischen Forschung des Instituts für computerbasiertes Entwerfen und Baufertigung (ICD) und des Instituts für Tragkonstruktion und konstruktives Entwerfen (ITKE) in diesem Bereich auf. Es zeigt, wie die interdisziplinäre Erforschung biologischer Prinzipien in Verbindung mit digitalen Technologien zu einem neuartigen und genuin digitalen Faserverbundbausystem führen kann. Noch vor wenigen Jahren wäre es unmöglich gewesen, einen Pavillon dieser Art zu planen oder zu bauen.

Integratives, computergestütztes Design und robotische Fertigung

Der Pavillon besteht aus mehr als 150.000 Metern räumlich angeordneter Glas- und Kohlestofffasern. Deren individuelle Orientierung sowie die Entwicklung der sich daraus ergebenden Laminate wäre mit einem herkömmlichen, linearen Planungsprozess und konventionellen Produktionstechnologien kaum umsetzbar gewesen. Dies führte zur Entwicklung eines neuartigen Co-Design-Ansatzes, bei dem die Anforderungen aus Architektur, Tragwerk und robotischer Fertigung in einem kontinuierlichen digitalen Prozess integriert wurden. Auf diese Weise können Dichte und Ausrichtung der Fasern in jedem Bauteil unter Berücksichtigung der Fertigungsbedingungen individuell abgestimmt, strukturell ausgelegt und architektonisch gegliedert werden.
Die Bauteile werden in einem robotergestützten, kernlosen Faserwickelprozess hergestellt. Dieser neuartige Ansatz zur additiven Fertigung wurde an der Universität Stuttgart entwickelt. Faserstränge werden von einem Roboter frei zwischen zwei rotierenden Wickelgerüsten platziert. Dabei ergibt sich die definierte Form des Bauteils durch die Wechselwirkungen der Fasern, ohne dass ein Formenbau oder Kern zur Ablage erforderlich ist. Dies ermöglicht eine maßgeschneiderte Form und individuelle Faserlagen für jedes Bauteil ohne wirtschaftliche Nachteile gegenüber einer Serienfertigung gleicher Bauteile. Darüber hinaus entstehen keine Produktions- oder Materialabfälle. Bei der Herstellung entsteht ein Netz aus lichtdurchlässigen Glasfasern, auf dem schwarze Kohlenstofffasern genau dort platziert werden, wo sie statisch benötigt sind. Dies verleiht den hochbelastbaren Bauteilen ihr unverwechselbares architektonisches Erscheinungsbild.
Die Serienproduktion der Elemente erfolgte durch den Industriepartner des Projekts, der FibR GmbH. Für die Herstellung jedes Tragelements sind rund 1.000 Metern Glas- sowie 1.600 Metern Kohlestofffasern erforderlich und werden durchschnittlich vier bis sechs Stunden benötigt.

Einzigartige Leichtbauweise und ausdrucksstarker architektonischer Raum

Der Pavillon umfasst eine Grundfläche von rund 400 m² und erreicht eine Spannweite von mehr als 23 Metern. Die primäre Tragkonstruktion besteht aus 60 maßgeschneiderten Faserverbundbauteilen. Mit 7,6 Kilogramm Konstruktionsgewicht der Faserverbundbauteile pro Quadratmeter ist die Struktur außergewöhnlich leicht, etwa fünfmal leichter als eine herkömmliche Stahlkonstruktion vergleichbarer Spannweite. Die tragende Faserverbundstruktur wird von einer transparenten, mechanisch vorgespannten ETFE-Membran umschlossen. Umfassende Prüfverfahren zur bauaufsichtlichen Zulassung der Konstruktion bestätigten, dass ein einzelnes Faserverbundbauteil bis zu 250 Kilonewton an Druckkräften aufnehmen kann. Dies entspricht etwa 25 Tonnen oder dem Gewicht von mehr als 15 Autos. Der Pavillon zeigt, wie ein integrativer Ansatz aus computergestützter Planung und robotischer Fertigung die Entwicklung neuartiger Faserverbundbausysteme ermöglicht, die den strengen deutschen Bauvorschriften entsprechen und gleichzeitig extrem leicht, effizient und architektonisch ausdrucksstark sind.
Eingebettet in die wellenförmige Landschaft des Geländes der Bundesgartenschau übersetzt der Pavillon diese Innovation auf technischer Ebene in ein einzigartiges architektonisches Erlebnis. Die schwarzen Kohlestofffasern wickeln sich wie gespannte Muskeln um das lichtdurchlässige Glasfasergeflecht. Der daraus resultierende Kontrast wird durch die transparente Hülle des Pavillons zusätzlich betont. Dieser charakteristische, architektonische Ausdruck wird durch die zunehmende Dichte die Kohlefaserbündel vom Scheitel des Pavillons zu den schlankesten Komponenten am Fußpunkt noch verstärkt. Die dem Gebäude zugrundeliegenden Konstruktions- und Gestaltungsprinzipien bleiben auf nachvollziehbare und ausdrucksstarke Weise ablesbar, obgleich die Besucher eine derartige Struktur wahrscheinlich noch nie zuvor gesehen haben. Die ungewöhnliche, aber in hohem Maße ausdrucksstarke architektonische Erscheinung zeigt neue Wege des digitalen Bauens, die nicht länger eine Zukunftsvision bleiben, sondern bereits heute greifbare Realität sind.

Der BUGA Faserpavillon liegt zentral auf der Sommerinsel der Bundesgartenschau 2019 und beherbergt die Ausstellung „Zukunftskarussell“.
Die Forschung an neuartigen Faserverbundbauweisen wird im Rahmen des neuen Exzellenzclusters „Integrative Computational Design and Construction for Architecture“ an der Universität Stuttgart weiter vertieft.

Projektpartner

ICD – Institut für Computerbasiertes Entwerfen und Baufertigung, Universität Stuttgart
Prof. Achim Menges, Serban Bodea, Niccolo Dambrosio, Monika Göbel, Christoph Zechmeister
ITKE – Institut für Tragkonstruktionen und Konstruktives Entwerfen, Universität Stuttgart
Prof. Jan Knippers, Valentin Koslowski, Marta Gil Pérez, Bas Rongen

FibR GmbH, Stuttgart
Moritz Dörstelmann, Ondrej Kyjanek, Philipp Essers, Philipp Gülke

Bundesgartenschau Heilbronn 2019 GmbH
Hanspeter Faas, Oliver Toellner

Projektgenehmigungsverfahren

Landesstelle für Bautechnik
Dr. Stefan Brendler, Dipl.-Ing. Steffen Schneider

Prüfingenieur
Dipl.-Ing. Achim Bechert, Dipl.-Ing. Florian Roos

DITF Deutsches Institute für Textil + Faserforschung
Prof. Dr.-Ing. Götz T. Gresser, Pascal Mindermann

Projektförderung

Land Baden-Württemberg
Universität Stuttgart
Baden-Württemberg Stiftung
GETTYLAB
Forschungsinitiative Zukunft Bau

Pfeifer GmbH
Ewo GmbH
Fischer Group

Projektdaten

Abmessungen
ca. 23m Durchmesser, Nutzfläche ca. 400m², Flächengewicht der tragenden Faserverbundstruktur ca. 7,6kg/m²

Konstruktion
60 tragende, robotisch gefertigte Glas- und Kohlefaserverbundbauteile aus insgesamt 150.000m Glas- und Karbonfasern, transparente, mechanisch vorgespannte ETFE Membran

BUGA Holzpavillon
Bundesgartenschau Heilbronn, 2019

BUGA Holzpavillon © ICD/ITKE Universität Stuttgart

Der BUGA Holzpavillon zeigt neue Ansätze zum digitalen Holzbau. Die segmentierte Schalenkonstruktion basiert auf biologischen Prinzipien des Plattenskeletts von Seeigeln, die vom Institut für Computerbasiertes Entwerfen und Baukonstruktion (ICD) und dem Institut für Tragkonstruktionen und konstruktives Entwerfen (ITKE) der Universität Stuttgart seit fast einem Jahrzehnt erforscht werden.

Im Rahmen des Projekts wurde eine Roboter-Fertigungsplattform für den automatisierten Zusammenbau und die Fräsbearbeitung der 376 maßgeschneiderten Segmentbauteile des Pavillons entwickelt. Dieses Herstellungsverfahren stellt sicher, dass alle Holzsegmente wie ein großes, dreidimensionales Puzzle mit einer Genauigkeit von weniger als einem Millimeter zusammengesetzt werden können. Mit minimalem Materialeinsatz spannt das atemberaubende Holzdach 30 Meter über einen der zentralen Konzert- und Veranstaltungsorte der BUGA und schafft so einen einzigartigen architektonischen Raum.

Biomimetischer Leichtbau: Segmentierte Holzschalen

Der BUGA Holzpavillon schafft eine architektonische Attraktion auf der zentralen Sommerinsel der Bundesgartenschau 2019 in Heilbronn. Die Gestaltung des Pavillons basiert auf morphologischen Prinzipien des Plattenskeletts von Seeigeln. Nach dem vorhergehenden Forschungsgebäude des gleichen Projektteams, dem Forstpavillon auf der Landesgartenschau 2014 in Schwäbisch Gmünd, verfolgt der BUGA Holzpavillon das Forschungsziel, die architektonische Gestaltung und strukturelle Leistungsfähigkeit biomimetischer segmentierter Holzschalen auf eine neue Ebene zu heben: Ist es möglich, mit der gleichen geringen Holzmenge pro Quadratmeter wie beim Forstpavillon eine Schale zu bauen, die die dreifache Spannweite erreicht? Und kann diese Struktur vollständig wiederverwendbar konstruiert werden, so dass sie nach der BUGA ohne Leistungsverlust rückgebaut und an einem anderen Standort wiedererrichtet werden kann?
Um diese Ziele zu erreichen, nutzt der Pavillon das biomimetischen Prinzip von „weniger Material“ durch „mehr Form“, sowohl in Bezug auf die Gesamtkonstruktion als auch auf der Ebene der einzelnen Segmente. Um Materialverbrauch und Gewicht zu minimieren, besteht jedes Holzsegment aus zwei dünnen Platten, die oben und unten einen Ring aus Randbalken beplanken und so hohle, großformatige Holzkassetten mit polygonalen Formen bilden. Die Bodenplatte beinhaltet eine große Öffnung, die während der Montage den Zugang zu den verdeckten Bolzenverbindungen ermöglicht und zugleich eine besondere architektonische Erscheinung erzeugt. Die Leichtbausegmente sind durch Fingerzinken verbunden, die den morphologischen Prinzipien an den Rändern der Seeigelplatten folgen. Im montierten Zustand wirkt die Holzschale durch ihre ausdrucksstarke, doppelt gekrümmte Geometrie als formaktives Tragwerk.

Integratives (Co)Design: Wechselwirkende Entwurfs-, Statik- und Fertigungsentwicklung

Neue Bauweisen erfordern neue Formen des Planens und Fertigens. Der BUGA Holzpavillon ist ein hervorragendes Beispiel für Co-Design, in welchem neue Möglichkeiten von Gestaltung, Konstruktion und Fertigung durch eine kontinuierliche, computerbasierte Rückkopplung in einem interdisziplinären Team entwickelt werden. Die für dieses Projekt entwickelten Co-Design-Methoden generieren die Form jedes Bauteils des Pavillons gemäß der architektonischen Entwurfsabsicht und der statischen Leistungsfähigkeit unter Berücksichtigung aller Aspekte der robotischen Fertigung.
Dieser hochintegrative Prozess ermöglicht die Fertigung von 376 unterschiedlichen Plattensegmenten mit 17 000 verschiedenen Keilzinkenverbindungen gemäß den vielfältigen konstruktiven Anforderungen an die Gesamtstruktur und die Details im Untermillimeter-Bereich. Dieser multiskalare Ansatz ermöglicht es, trotz des Pioniercharakters des Projekts und ungeachtet seiner kurzen Entwicklungszeit von nur 13 Monaten von der Beauftragung bis zur Eröffnung, architektonische und strukturelle Aspekte ohne Verlust an Präzision gleichzeitig zu berücksichtigen.

Robotische Vorfertigung: Kombination von automatisierter Montage mit hochpräziser Bearbeitung

Im Vergleich zu massiven Holzelementen, wie sie beispielsweise in dem Vorgängerbau des Forstpavillons eingesetzt wurden, reduzieren die Holzkassetten Gewicht und Material deutlich, erhöhen aber auch die Anzahl der Bauteile um das Achtfache und führen zu einer komplexeren Fertigung. Das Streben nach höherer Ressourceneffizienz muss daher mit der automatisierten Roboterfertigung der Schalensegmente einhergehen. Dazu wurde vom ICD Universität Stuttgart und der BEC GmbH eine neuartige, transportable, 14-achsige Roboter-Holzfertigungsplattform entwickelt, die beim Industriepartner MüllerBlaustein Holzbauwerke GmbH zum Einsatz kam. Die Plattform beinhaltet zwei Schwerlastroboter, die auf einem 20-Fuß Standard-Containerboden montiert sind. Die Flexibilität von Industrierobotern ermöglicht die Integration aller Vorfertigungsschritte der Kassettensegmente des Pavillons innerhalb einer einzigen, kompakten Fertigungseinheit.
Während der Produktion werden die Holzkassetten zunächst von den Robotern zusammengebaut. Dazu gehören die Platzierung von vorformatierten Holzplatten und -balken, das kontrollierte Aufbringen des Klebstoffs zwischen Platten und Balken, sowie eine temporäre Lagesicherung mit Buchennägeln für den Trocknungsvorgang. In einem zweiten Schritt werden in die montierten Segmente die maßgeschneiderten Keilzinkenverbindungen und Öffnungen mit 300μm Genauigkeit gefräst. Von der Montage der Balken und Platten, über das Fräsen mit unterschiedlichen Werkzeugen, bis hin zur sensorbasierten Prozess- und bildbasierten Qualitätskontrolle – alles geschieht in einem vollautomatischen Ablauf, gesteuert von 2 Millionen Zeilen Robotercode, die direkt aus dem computerbasierten Modell erzeugt werden. Im Durchschnitt dauert das robotische Fügen 8 Minuten pro Segment. Für das Hochpräzisionsfräsen werden weitere 30 Minuten benötigt.

BUGA Holzpavillon: Eine innovative Struktur und ein spannender architektonischer Raum

Die komplett vorgefertigten Holzkassetten wurden von einem Team von zwei Handwerkern in nur 10 Arbeitstagen im freien Vorbau vor Ort montiert, ohne die sonst üblichen, umfangreichen Unterkonstruktionen oder Stützgerüste zu benötigen. Nach der Verbindung der Segmente über wiederverwendbare Bolzen, wurde eine EPDM-Folie in 8 Streifen über den Pavillon gelegt und so die Wasserdichtigkeit sichergestellt. Sie sichtbare Außenverkleidung des Pavillons bilden unbehandelte Lärchenplatten. Alle Bauelemente sind für leichte Demontage und Wiederaufbau an einem anderen Ort ausgelegt.
Die tragende Holzschale des Pavillons erreicht eine stützenfreie Spannweite von 30 Metern bei einem Gewicht von nur 38 kg/m². Dies ist weniger als das Flächengewicht des Forstpavillons, trotz der dreifachen Spannweite und fünffachen Größe! Der BUGA Holzpavillon zeigt die Möglichkeiten einer effizienten, wirtschaftlichen, ökologischen und ausdrucksstarken Holzarchitektur, die an der Schnittstelle von Handwerk, digitaler Innovation und Forschung entsteht.
Der BUGA Holzpavillon liegt an einer zentralen Kreuzung in der wellenförmigen Landschaft der Sommerinsel des BUGA-Geländes. Drei dynamische Bögen bilden einladende Öffnungen zu den Hauptwegeachsen aus und führen die Besucher in das Innere des Pavillons. Die Schale schafft einen geschwungenen Raum für Konzerte und öffentliche Veranstaltungen, mit einer sehr guten Akustik und einer einzigartigen architektonischen Atmosphäre. Dies gilt insbesondere bei Nacht, wenn Tausende von LED-Leuchten, die in die inneren Öffnungen der Schale eingebettet sind, das Innere des Pavillons in ein dezentes, warmes und einladendes Licht tauchen.

Der BUGA Holzpavillon befindet sich auf der Sommerinsel der Bundesgartenschau 2019. Er wird am 17. April 2019 durch den Ministerpräsidenten des Landes Baden-Württemberg eröffnet.
Die Forschung an digitalen Holzbausystemen wird im Rahmen des neuen Exzellenz-Clusters „Integratives Computerbasiertes Planen und Bauen für die Architektur“ an der Universität Stuttgart fortgesetzt.

Projektpartner

ICD – Institut für Computerbasiertes Entwerfen und Baufertigung, Universität Stuttgart
Prof. Achim Menges, Martin Alvarez, Monika Göbel, Abel Groenewolt, Oliver David Krieg,
Ondrej Kyjanek, Hans Jakob Wagner

ITKE – Institut für Tragkonstruktionen und konstruktives Entwerfen, Universität Stuttgart
Prof. Jan Knippers, Lotte Aldinger, Simon Bechert, Daniel Sonntag

Müllerblaustein Bauwerke GmbH, Blaustein
Reinhold Müller, Daniel Müller, Bernd Schmid

BEC GmbH, Reutlingen
Matthias Buck, Zied Bhiri

Bundesgartenschau Heilbronn 2019 GmbH
Hanspeter Faas, Oliver Toellner

Projektgenehmigungsverfahren

Landesstelle für Bautechnik
Dr. Stefan Brendler und Dipl.-Ing. Willy Weidner

Prüfingenieur
Prof. Dr.-Ing. Hugo Rieger

MPA Stuttgart
Dr. Simon Aicher

Projektunterstützung

Land Baden-Württemberg
Universität Stuttgart
EFRE Europäische Union
GETTYLAB
DFG Deutsche Forschungsgemeinschaft

Carlisle Construction Materials GmbH
Puren GmbH
Hera Gmbh co.KG
Beck Fastener Group
J. Schmalz GmbH
Niemes Dosiertechnik GmbH & Co. KG
Jowat Adhesives SE
Raithle Werkzeugtechnik
Leuze electronic GmbH & Co. KG
Metsä Wood Deutschland GmbH

Projektdaten

Abmessungen
ca. 32 x 25 x 7 m (LxBxH), Nutzfläche ca. 500m², Schalenfläche 600m², Flächengewicht tragende Holzkonstruktion 36,8kg/m²

Konstruktion
Tragende Schale: robotisch gefertigte Hohlkassettensegmente aus Fichtenfurnierschichtholz mit UV-Schutz, Vorsatzschale: EPDM-Abdichtung, 3-Achs CNC-geschnittene unbehandelte Lärchendreischichtplatten

Pressemitteilung: Universität Stuttgart